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Pseudomonas aeruginosa produces two secreted phospholipase C (PLC) enzymes. The expression of both
PLCs is regulated by P;. One of the PLCs is hemolytic, and one is nonhemolytic. Low-stringency hybridization
studies suggested that the genes encoding these two PLCs shared DNA homology. This information was used
to clone plcN, the gene encoding the 77-kilodalton nonhemolytic PLC, PLC-N. A fragment of plcN was used to
mutate the chromosomal copy of plcN by the generation of a gene interruption mutation. This mutant produces
55% less total PLC activity than the wild type, confirming the successful cloning of plcN. plcN was sequenced
and encodes a protein which is 40% identical to the hemolytic PLC (PLC-H). The majority of the homology lies
within the NH, two-thirds of the proteins, while the remaining third of the amino acid sequence of the two
proteins shows very little homology. Both PLCs hydrolyze phosphatidylcholine; however, each enzyme has a
distinct substrate specificity. PLC-H hydrolyzes sphingomyelin in addition to phosphatidylcholine, whereas
PLC-N is active on phosphatidylserine as well as phosphatidylcholine. These studies suggest structure-function

relationships between PLC activity and hemolysis.

Pseudomonas aeruginosa is an important opportunistic
pathogen. One of the highest incidences of P. aeruginosa
infections occurs in the lungs of patients with cystic fibrosis.
Several secreted proteins of this organism may contribute to
pathogenesis in the lungs (18), including a hemolytic phos-
pholipase C (PLC-H). One of the substrates for PLC-H is
phosphatidylcholine, which is hydrolyzed to release phos-
phorylcholine and diacylglycerol (6). Substrate specificity
studies have shown that PLC-H preferentially hydrolyzes
phospholipids containing quaternary ammonium groups,
which are found primarily in eucaryotic membranes and lung
surfactant (e.g., phosphatidylcholine), but has little activity
toward phospholipids found in the procaryotic membrane
(e.g., phosphatidylethanolamine) (2).

The structural gene encoding PLC-H (plcS) has been
cloned and sequenced (4, 19, 26, 34). plcS is part of the
three-gene plcSR operon, which is regulated by P, at the
level of transcription (26, 29). The gene product of plcS is an
82.6-kilodalton (kDa) protein containing a 38-amino-acid
signal peptide which, when cleaved, yields a secreted 78.2-
kDa mature hemolysin. Downstream of plcS are two in-
phase overlapping genes, plcRI and plcR2 (26, 29). The
function of the plcR gene products is not known, but they
may play a role in regulating or activating PLC-H (36; M.
Vasil and A. Vasil, unpublished observations).

To study the function of PLC-H, we constructed insertion
and deletion mutations in plcS (24, 25). These mutations
were recombined into the P. aeruginosa chromosome in
place of the wild-type allele, resulting in nonhemolytic plcS
mutant strains which were isogenic with the wild type at all
other loci. Characterization of these mutants led to the
discovery of an additional PL.C produced by P. aeruginosa
because culture supernatants of the plcS deletion mutant
hydrolyze phosphatidylcholine (24, 25). The hydrolysis of
phosphatidylcholine by supernatants produced by the plcS
mutant is reduced by 50 to 70% in comparison with the
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activity of supernatants from the wild-type strain (24). This
PLC, PLC-N, is secreted, and its synthesis is regulated by
P;. However, in contrast to PLC-H, PLC-N is nonhemolytic
for human or sheep erythrocytes.

This report describes the characterization of PLC-N,
including cloning and sequencing of the structural gene. The
substrate specificity of PLC-N was investigated, and a P.
aeruginosa PLC-N mutant was constructed. The amino acid
sequences of PLC-N and PLC-H were compared, and struc-
ture-function relationships between hemolysis and PL.C ac-
tivity were suggested.

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains and
plasmids used in this study are listed in Table 1.

Media and antibiotics. Escherichia coli cultures were
grown in brain heart infusion broth (Difco Laboratories,
Detroit, Mich.) or M9 minimal medium (21) at 37°C. Peptone
medium (1% peptone, 1% NaCl, 1% glycerol) (14) was used
for production of PLC from P. aeruginosa with or without
the addition of 10 mM P; at 32°C. Pseudomonas isolation
agar (Difco) supplemented with the appropriate antibiotics
was used to select for P. aeruginosa in mating experiments.
Antibiotics were used in the following concentrations: for E.
coli, carbenicillin at 100 mg/liter and tetracycline at 20
mg/liter; for P. aeruginosa, tetracycline at 200 mg/liter.

Isolation and manipulation of DNA and Southern blot
hybridization. Conditions for DNA purification and manipu-
lation for cloning were as described previously (21). Restric-
tion endonucleases and DNA-modifying enzymes were used
as indicated by the supplier (Bethesda Research Laborato-
ries, Inc., Gaithersburg, Md.). Genomic DNA from P.
aeruginosa was isolated by a modification of the method of
Marmur (13, 35). Southern blot hybridization was as previ-
ously described (31, 35). Low-stringency hybridization con-
ditions were 25% (vol/vol) formamide, 1 M NaCl, 10%
dextran sulfate, 1% sodium dodecyl sulfate (SDS), and 100
ng of heat-denatured salmon sperm DNA per ml at 42°C
overnight. Low-stringency washes were performed in 5X
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TABLE 1. Bacterial strains and plasmids used in this work

Strain or plasmid Genotype or phenotype Reference
E. coli
DHS-a F~ endAl hsdR17 (rx~ mg*) supE44 thi-1 recAl gyrA96 relAl 11
A(lacZYA-argF) U169 ¢$80dlacZAM15
S17-1 thi pro hsdR hsdM™* recA integrated RP4-2-Tc"::Mu Kn"::Tn7 30
BL21(DE3) F~ hsdS (rg~ mg™) ompT gal \ lysogen containing T7 RNA 32
polymerase under control of the lacUVS5 promoter
P. aeruginosa
PAO1 Prototroph, chl-3 12
PLC SR AplcSR::Tc" 25
PLC N-C1 PAO1 with pSUP/Hinc420 integrated This study
PLC N-C2 PAO1 with pSUP/Hinc444 integrated This study
Plasmids
pSUP203 Ap"/Cb" Cm" Tc" mob 30
pUC/PLC-N Ap"/Cb" pUC18 8-kb EcoRI-BamHI PLC-N This study
pGEM1/PLC-N Ap'/Cb" pGEM1 3-kb Clal-BamHI PLC-N This study
pGEM2/PLC-N Ap"/Cb" pGEM2 3-kb Clal-BamHI PLC-N This study
pGEM2/PLC-H Ap"/Cb" pGEM2 6.1-kb BamHI PLC-H 26; this study
pSUP/Hinc420 Ap"/Cb" Tc" pSUP203/0.420 kb Hincll of plcN This study
pSUP/Hinc444 Ap"/Cb" Tc* pSUP203/0.444 kb Hincll of plcN This study

SSC (1x SSC is 0.15 M NaCl plus 0.015 M trisodium citrate
[pH 7.0])-0.1% SDS for 1 h at 55°C.

Enzyme assays. PLC activity was measured by using the
method of Kurioka and Matsuda (15), in which the hydroly-
sis of p-nitrophenylphosphorylcholine (NPPC; Sigma) is
monitored.

Sphingomyelinase activity was measured as described
previously (7) by the hydrolysis of N-omegatrinitrophenyl-
aminolaurylsphingosylphosphorylcholine (TNPAL-sphingo-
myelin; Sigma). Hydrolysis of phosphatidylserine by cloned
PLC enzymes produced in E. coli was performed as de-
scribed by Berka and Vasil (2). Release of soluble phospho-
rus was measured spectrophotometrically by the method of
Chen et al. (3). Assays were performed with either superna-
tants from P. aeruginosa cultures or cell lysates from 1 ml of
E. coli cultures.

T7 RNA polymerase-directed expression of cloned proteins.
The system for selective expression of genes cloned down-
stream of a T7 promoter was developed by F. W. Studier
(32). pGEM plasmids (Promega-Biotec, Madison, Wis.) con-
taining cloned genes downstream of the vector T7 promoter
were transformed in E. coli BL21(DE3). T7 RNA polymer-
ase expression was induced with 1 mM isopropyl-B-D-
thiogalactopyranoside (IPTG; Bethesda Research Laborato-
ries, Inc.) when the culture had reached an Asg, of 0.6. Then,
30 min later, rifampin was added to 200 png/ml and the cells
were incubated for 30 min longer. L-[>>SImethionine-L-
[**S]cysteine (Tran>’S-label; ICN Radiochemicals Inc., Ir-
vine, Calif.) was added at 0.15 pCi/ml of culture, and
samples (500 pl) were taken 30 min later. The cells were
suspended in sample buffer, boiled, and run on SDS-10%
polyacrylamide gels (16). The gel was fixed in 10% acetic
acid-30% methanol for 1 h, placed in distilled H,O for 30
min, soaked in 0.5 M sodium salicylate-5% glycerol for 1 h,
dried, and used to expose X-ray film. Samples for enzyme
assays were obtained by freezing.

DNA sequencing. Both double-stranded and single-
stranded DNAs were sequenced by the chain termination
method of Sanger et al. (28) with a modified T7 DNA
polymerase (Sequenase Kit; U.S. Biochemical Corp., Cleve-
land, Ohio). Double-stranded DNA was sequenced by using
a primer complementary to either the SP6 or T7 promoter

region of the pGEM vectors (Promega). Several oligonucle-
otide primers used in single-stranded template sequencing
were generously provided by R. Berka, Genencor, Inc.,
South San Francisco, Calif. Primer annealing and DNA
sequencing were performed as described in the Sequenase
manual with deoxyadenosine 5'-a-[>**S]thiotriphosphate
(>1,000 Ci/mmol; Amersham Corp., Arlington Heights, Il1.).
Single-stranded template DNA was isolated from the E. coli
host JM107 (40) containing pGEM7Zf (Promega) vectors
with plcN inserts by using an M13 helper phage as directed
by the supplier (Promega). Double-stranded templates were
either from deletion clones generated by using the Erase-A-
Base system (Promega) or from subcloning restriction endo-
nuclease fragments. Sequencing data were analyzed by using
the IBI-Pustell Sequence Analysis Software (IBI, New Ha-
ven, Conn.). The coding region was examined for adherence
to the codon usage bias of P. aeruginosa (39).

RESULTS

Cloning of PLC-N. Because PLC-H and PLC-N are both
P,-regulated PLC enzymes which have similar phospholipid
substrate specificities, we proposed that their genes would
also share sequence homology. A Southern hybridization
was performed under low-stringency conditions (7, —37°C)
by using an internal 1.4-kilobase (kb) Stul-PstI probe from
plcS (26) to test this hypothesis. Chromosomal DNA from
strain PAO1 and the plcSR deletion mutant were tested for
hybridization to this probe (Fig. 1). As expected, a 6.1-kb
band from the PAO1 BamHI genomic digestion hybridizes to
the plcS probe (lane 3). Under low-stringency conditions a
second band of about 12 kb is visible. This band also occurs
in the plcSR mutant genomic sample (lane 6). Since this
mutant is deleted for plcS, the structural gene for PLC-H, it
was possible that plcN, the gene encoding PLC-N, was
contained on this fragment. The hybridization data were
used as a guide to clone plcN.

Further low-stringency hybridization studies identified an
8-kb EcoRI-BamHI fragment in the plcSR mutant chromo-
some which hybridized to the plcS probe (data not shown).
A 25-pg sample of the plcSR mutant chromosomal DNA was
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FIG. 1. Low-stringency Southern blot of chromosomal digests
from PAO1 and PLC SR hybridized to the Stul-Pst1 plcS probe. Size
standards are given in kilobases. Lanes: 1, lambda DNA, HindIII; 2,
blank; 3, PAO1, BamHI; 4, PAO1, Xhol; 5, blank; 6, PLC SR,
BamHI; 7, PLC SR Xhol.

double digested with BamHI and EcoRI and subjected to
electrophoresis through a 0.8% agarose gel, and three frac-
tions of DNA in the area of 8 kb were sliced from the gel.
The DNA was purified, and a small amount (1 ng) of each
fraction was probed with the plcS fragment in a Southern
hybridization. The hybridizing fraction was cloned into
EcoRI-BamHI double-digested pUC18 and pUC19 (40).
Tightly regulated genes from P. aeruginosa are not usually
transcribed from their own promoters in E. coli. Since the
direction of transcription of plcN was unknown, both pUC18
and pUC19 were used to allow cloning of the P. aeruginosa
fragments downstream of a vector promoter in both orien-
tations.

Because a single band from the plcSR mutant hybridized
to the plcS probe, it was likely that the entire plcN gene was
contained on the cloned fragment. In addition, very little
background PLC activity is present in E. coli. Therefore, the
E. coli clones were screened for PLC activity first, rather
than hybridization to the plcS probe. A total of 800 clones
(400 for each vector) were tested for PLC activity by using
the NPPC assay in microdilution dishes. Eleven clones were
identified as PLC positive, and they all contained inserts
cloned into pUCI18. The inserts had identical restriction
enzyme digestion patterns, and the same-sized fragment
hybridized to the plcS probe (data not shown). The PLC
activity of the plcN clone chosen for further studies was 1.46
U/ml of cells per Asqy, Which is 4.3-fold higher than the value
for the vector control. plcN was subcloned within a 3-kb
Clal-BamHI fragment into Accl-BamHI double-digested
pGEM1 and pGEM2. .

Molecular weight determination of PLC-N. The 3-kb Clal-
BamHI plcN fragment was cloned into AccI-BamHI double-
digested pGEM1 and pGEM2. This allows the expression of
plcN directed by the T7 promoter of these vectors. pPGEM2/
PLC-N contains plcN cloned in the same orientation as the
T7 promoter, whereas pPGEM1/PLC-N contains plcN in the
opposite orientation. The T7 RNA polymerase-directed
expression system was used to induce high-level synthesis of
PLC-N. [>*S]methionine- plus [**S]cysteine-labeled plasmid-
encoded proteins from cell lysates were examined by SDS-
polyacrylamide gel electrophoresis (PAGE) (Fig. 2). A 78-

NONHEMOLYTIC AND HEMOLYTIC PLC OF P. AERUGINOSA 5917

97.4

68.0

43.0

29.0

18.4
143

FIG. 2. Autoradiograph of SDS-PAGE of 3*S-amino-acid-labeled
cell lysates, using the T7 RNA polymerase expression system to
express plcN. Standards at the left are given in kilodaltons. Lanes:
1, pGEM1; 2, pGEMI1/PLC-N; 3, pGEM?2; 4, pGEM2/PLC-N.
Arrows point out insert-specific proteins. The 29-kDa protein is
B-lactamase.

kDa protein is produced in an insert- and orientation-specific
manner (lane 4). A smaller, 18-kDa, protein is insert specific
but not orientation specific. The large, dark area of the gel at
29 kDa is the vector-encoded B-lactamase.

Two deletion subclones of the 3-kb plcN fragment which
were missing either 1.1 or 1.4 kb at the 3’ end of the fragment
were tested by using the T7 expression system. Cell lysates
of the clones were subjected to SDS-PAGE, and truncated
proteins of 44 and 35 kDa were produced, respectively (data
not shown). The sizes of the truncated proteins are consis-
tent with the identification of the 78-kDa protein as PLC-N.
These and other plcN subclones were tested for PLC activity
(Fig. 3B). None of the 3'-deleted clones retained PLC
activity. Taken together, the size of the truncated proteins
and the PLC activity data predict the start of plcN to be
approximately 0.7 kb from the Clal end of the clone and the
3’ end of plcN to be about 0.2 kb from the BamHI end of the
clone.

Substrate specificity assays of PLC-N and PLC-H. Some
PLC enzymes use sphingomyelin as a substrate. These
enzymes, including Clostridium perfringens a-toxin (20), are
often hemolytic. Other PLCs which cannot cleave sphingo-
myelin, such as the Bacillus cereus PLC, are usually nonhe-
molytic (8). The PLC and sphingomyelinase activities of the
pGEM2/PLC-N and pGEM2/PLC-H clones were measured
by using the T7 RNA polymerase-directed expression sys-
tem. The PLC activities of pGEM2/PLC-N and pGEM?2/
PLC-H were 108.3 and 166.7 U/ml of cells per Asqg, respec-
tively. PLC-H has sphingomyelinase activity (87.5 U/ml of
cells per Asqy,) but PLC-N does not (<1.0 U/ml of cells per
Asqg). This observation also holds true in P. aeruginosa.
Wild-type PAO1 culture supernatants contain sphingomyeli-
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FIG. 3. (A) Restriction endonuclease cleavage map of the 3-kb plcN clone. (B) Subclones and truncations of plcN. Also shown is the PLC

activity of each clone. (C) Sequencing strategy for picN.

nase activity, but the plcSR deletion mutant supernatants do
not (data not shown). '

Phosphatidylserine is a constituent of eucaryotic mem-
branes, and its hydrolysis by PLC-H and PLC-N was tested
with samples produced in the T7 RNA polymerase system

2.0

A820

Time (hrs)

FIG. 4. Hydrolysis of phosphatidylserine by PLC-H (A) and
PLC-N (A).

(Fig. 4). Only PLC-N, but not PLC-H, was capable of
cleaving phosphatidylserine.

Construction and analysis of PLC-N cointegrates. To con-
clusively demonstrate that a gene had been cloned which
affected PLC production in P. aeruginosa, we constructed a
gene interruption mutation in strain PAOl. Two Hincll
fragments of 444 and 420 base pairs from plcN were chosen
for construction of the mutation. These fragments are ar-
ranged tandemly approximately 300 bp from the beginning of
plcN, with the 444-bp fragment upstream of the 420-bp
fragment (Fig. 3A). EcoRlI linkers were ligated onto the blunt
ends of these fragments, and they were each cloned individ-
ually into the EcoRI site of pSUP203, which results in
inactivation of the Cm" gene, and transformed into E. coli
S17-1. The plasmids were transferred to P. aeruginosa
PAO1 in mating experiments, and. Tc" recombinants were
selected. Tc" is vector encoded, and since these plasmids do
not replicate in P. aeruginosa, the conversion to Tc" is a
result of homologous recombination between the chromo-
somal plcN locus and the small plcN fragment on the
plasmid (Fig. 5). A single recombinational event results in
cointegration of the entire plasmid into the chromosome,
producing two incomplete copies of the plcN gene inter-
rupted by vector sequences. The successful integration of
these plasmids at the plcN locus was confirmed by Southern
hybridization (data not shown). We are currently attempting
to construct a strain with a mutation in both genes, but
because of the high level of natural resistance of P. aerugi-
nosa to many antibiotics, it has been difficult to identify an
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FIG. 5. Construction of the plcN cointegrate mutant strains.

antibiotic resistance marker other than Tc" which we can use
for selection of the mutant phenotype in this strain since
production of PLC is not a selectable phenotype.

The PLC activity of the PLC-N cointegrates was mea-
sured (Table 2). As predicted above, the total PLC activity
decreased by approximately 55% from that in PAO1 under
low-P; growth conditions. This observation is consistent
with the conclusion that the gene encoding the second PLC,
plcN, has been successfully mutated by using the cloned
sequences. Therefore, the structural gene for PLC-N has
been cloned.

The pattern of P; regulation is also consistent with the
inactivation of plcN. As illustrated by the plcSR mutant, the
synthesis of PLC-N is tightly regulated by P; (>30-fold
repressed by 10 mM P;). The PLC activity of the PLCN-C1
and PLCN-C2 cointegrates originates from PLC-H expres-
sion, which is not as tightly repressed by P; (eightfold
repressed by 10 mM P;). The PLC-N cointegrates remain

TABLE 2. PLC activity produced by mutant and
wild-type strains

PLC activity? Relative % activity?

Strain _ —
+P; -P; +P; -P;

PLCN-C1 1.0 8.0 5.3 42.1

PLCN-C2 1.1 9.3 5.8 48.9

PLC SR 0.3 10.0 1.6 52.6

PAO1 2.0 19.0 10.5 100.0

“ PLC activity is reported in units per milliliter of culture supernatant per

Asoo.
(3 Relative percent activity is the value of each mutant compared with that
of PAOL1 in low-P; medium.

hemolytic, further confirming that the expression of PLC-H
has not been altered.

Sequence of plcN. Overlapping sequence data were ob-
tained primarily by using synthetic oligonucleotide primers.
The DNA sequence of the entire Clal-BamHI picN cloned
fragment was determined (Fig. 6). Both DNA strands were
sequenced by using either single-stranded or double-
stranded templates (Fig. 3C).

A 2,075-bp open reading frame was identified between
positions 759 and 2834. This is large enough to encode a
77-kDa protein, which is in close agreement with the size
predicted from the protein expression studies. The positions
of the initiation and termination codons are consistent with
those predicted by the subclone expression data. A potential
Shine-Dalgarno ribosome-binding sequence (GAG) was
identified 7 bp upstream of the ATG initiation codon.

The overall G+C content of the coding region is 67.3%,
which is consistent with the predicted genomic G+C content
of P. aeruginosa (67%). There is a 91-bp stretch of A+T-rich
sequence (62.6% A+T) beginning 191 bp upstream of the
initiation codon. The codon usage bias of plcN adheres very
well to that predicted for P. aeruginosa (39) and results in a
preference for C in the third position.

The predicted protein is very hydrophilic. A putative
signal peptide was identified which contains the properties
predicted for signal sequences (5, 37, 38). There is an
11-amino-acid charged NH,-terminal region of plcN with a
net charge of 4+, followed by a 17-amino-acid hydrophobic
core region. A polar C-terminal region ends with the se-
quence Ala-Leu-Ala 8 amino acids after the hydrophobic
core. Signal peptidase cleavage is inferred to occur at this
position. Alanine is very abundant in procaryotic signal
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TABLE 3. Comparison of mature PLC proteins®

No. of residues in:

Amino acid
PLC-N PLC-H
Ala 53 54
Val 41 47
Leu 50 57
Ile 20 18
Pro 50 44
Met 12 10
Phe 32 24
Trp 17 23
Gly 59 59
Ser 40 45
Thr 36 32
Cys 3 6
Tyr 22 39
Asn 32 34
Gln 27 34
Asp 44 44
Glu 26 38
Lys 25 19
Arg 49 47
His 19 18
Total 657 692

4 All values are predicted from the DNA sequence data. Molecular weights
are 73,455 and 78,352 for PLC-N and PLC-H, respectively. Predicted pl
values are 8.8 and 5.5 for PLC-N and PLC-H, respectively.

sequences (38), and the PLC-N signal sequence contains
eight alanine residues. The entire proposal signal peptide is
35 amino acids, which is long in comparison with other
procaryotic signal sequences but close to PLC-H in length
(38 amino acids) (26). It is also interesting that both putative
signal sequences contain the amino acid phenylalanine. This
amino acid is not usually found in procaryotic signal se-
quences, although pilin, which is the subunit of some bacte-
rial pili, contains an N-methylphenylalanine at the +1 posi-
tion.

Comparison of PLC-N and PLC-H. The nucleotide se-
quence of plcN is 58.7% homologous to that of picS. The
amino acid sequences of PLC-N and PLC-H are also quite
homologous (Fig. 6). The overall amino acid homology is
40% identical. The homology is greatest at the NH, ends of
the two proteins, in which the first two-thirds of the proteins
are 47% identical. There are several short stretches of
perfect identity in this area. The last one-third of the proteins
share only 23% identity.

Several properties of PLC-N are similar to those of
PLC-H (Table 3). The molecular weights of the two proteins
are very close, and the predicted amino acid compositions
are extraordinarily similar. However, the predicted pls of
the two proteins are quite different (Table 3, footnote a).
PLC-H is an acidic protein (pI 5.5), whereas PLC-N is basic
(pl 8.8). The pl difference can be accounted for by the
smaller number of glutamic acid residues and the larger
number of lysine residues in PLC-N in comparison with
PLC-H. The mobility of PLC-H and PLC-N on nondenatur-
ing polyacrylamide gels (pH 7.5) is consistent with their
predicted pls (data not shown). PLC-N fails to enter these
gels, either because it is hydrophobic or aggregated or
because the positive charge of the molecule prohibits its
migration toward the cathode. The latter is consistent with a
basic pl. PLC-H has a predicted pI of 5.5, which is reflected
in its efficient migration in nondenaturing gels.
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DISCUSSION

These studies describe the cloning and characterization of
the gene encoding a 77-kDa nonhemolytic secreted PLC
from P. aeruginosa, PLC-N. The cross-hybridization of
plcN to a plcS probe was a convenient tool for cloning plcN.
Like the hemolytic PLC, PLC-H, expression of PLC-N is P;
regulated and secreted.

Since plcS is deleted in the strain used for cloning plcN,
the cloned PLC activity originates from plcN. Internal
fragments from the cloned DNA were used to generate gene
interruption mutants which produced 55% less total PLC
activity than the wild-type strain. The hybridization data, the
PLC activity expressed in E. coli, and the decrease in PLC
activity of the gene interruption mutant all support the
conclusion that plcN was successfully cloned.

In contrast to the many similarities of PLC-N to PLC-H,
PLC-N is nonhemolytic. Although both enzymes hydrolyze
phosphatidylcholine, PLC-N does so only 30 to 50% as
efficiently as PLC-H. Perhaps PLC-N is nonhemolytic be-
cause it does not efficiently attack phospholipids which are
assembled into a membrane-type structure, but can easily
cleave small molecules such as NPPC or solubilized phos-
pholipids. The PLC produced by B. cereus is nonhemolytic
to intact erythrocytes (22). However, it can hydrolyze a
broad spectrum of phospholipids in in vitro assays in which
the phospholipids are detergent solubilized (22).

The cereolysin of B. cereus is hemolytic and is a combi-
nation of PLC and a sphingomyelinase (8). PLC-H possesses
both PLC and sphingomyelinase activity. Similarly, the
hemolytic C. perfringens o-toxin is both a PLC and a
sphingomyelinase (33). Neither PLC-N nor the B. cereus
PLC are sphingomyelinases, nor are they hemolytic. These
examples suggest that the hemolytic activity of a PLC is
dependent upon the combined ability to hydrolyze phospho-
lipids such as phosphatidylcholine and sphingomyelin.

Phosphatidylserine is the only major constituent of eu-
caryotic membranes which carries a net negative charge.
The basic (pI 8.8) nature of PLC-N may contribute to its
ability to hydrolyze phosphatidylserine. PLC-H is acidic (pI
5.5) and does not hydrolyze phosphatidylserine as it does
other phospholipid substrates, such as phosphatidylcholine
and sphingomyelin. Phosphatidylserine is found primarily in
the inner leaflet of the erythrocyte membrane and therefore
is unavailable for hydrolysis as long as the outer leaflet
remains intact. PLC-N may be nonhemolytic because the
phospholipid components of the outer leaflet of the erythro-
cyte membrane (phosphatidylcholine and sphingomyelin)
are not hydrolyzed efficiently by PLC-N. In contrast, the
phospholipid substrates hydrolyzed by PLC-H are major
constituents of the outer leaflet. This difference could ex-
plain the hemolytic nature of PLC-H and the nonhemolytic
property of PLC-N. In this regard it should be mentioned
that just because PLC-H has sphingomyelinase activity and
activity against phosphatidylcholine, these activities do not
fully account for the hemolytic activity of PLC-H. We have
recently found that one or both of the products of the picR
genes (29) posttranslationally modifies PLC-H. Modified
PLC-H is more hemolytic and migrates faster in nondena-
turing PAGE than the unmodified version. In denaturing
PAGE (SDS-PAGE) there is no detectable difference in their
migration. Although the precise nature of the modification is
not known, it is clear that it is necessary for the full
hemolytic activity of PLC-H (36; M. L. Vasil, R. M. Ostroff,
and A. 1. Vasil, unpublished observations).

Both of the PLC enzymes are synthesized maximally by
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P. aeruginosa under low-P; growth conditions. Other pro-
teins, such as alkaline phosphatase and P; transport proteins,
are similarly regulated (10). Perhaps the varied substrate
specificities of the two PLCs allow for more efficient degra-
dation of eucaryotic membrane phospholipids in order to
acquire P;. The two enzymes could work sequentially and
synergistically. PLC-H would begin degradation of the
erythrocyte membrane, exposing the inner leaflet. PLC-N
could then hydrolyze phosphatidylserine. The products of
phospholipid hydrolysis (e.g., phosphorylcholine) would be
digested by alkaline phosphatase to release P;.

The DNA sequence of plcN was determined. The 2,075-bp
open reading frame is large enough to encode a protein of 77
kDa, the predicted size of PLC-N. No consensus procary-
otic promoter was found upstream of plcN, which is not
unusual for P. aeruginosa genes. The fact that plcN is not
expressed in E. coli from its own promoter is also consistent
with there being no consensus promoter. There are se-
quences upstream of plcN which may be analogous to the
consensus pho box found upstream of E. coli genes which
are regulated by P;, but assignment of any function to these
sequences must await further analysis. The promoter region
of plcN may be contained within the unusually A+T-rich
area 191 bp upstream of plcN. An A+T-rich stretch also
occurs upstream of the exotoxin A gene and is proposed to
facilitate the binding of RNA polymerase as a result of the
lower energy required to denature the DNA in this area. A
conserved dodecamer sequence is found in the promoter
region of exotoxin A and plcS (9). No similarity to this
dodecamer was found upstream of plcN.

There are several similarities between PLC-N and PLC-H.
The proteins have similar sizes, are secreted, and are pro-
duced maximally in low-P; medium during the same growth
phase of the culture. Both enzymes hydrolyze phospholipids
with quaternary ammonium groups, such as phosphatidyl-
choline, which is abundant in the eucaryotic cell membrane
(1), and both have little activity toward phosphatidylethanol-
amine, a phospholipid found primarily in the procaryotic
membrane (1).

The hybridization data predicted homology between the
two proteins. The plcS probe used for the cloning of plcN is
homologous to plcN in the region from 1263 to 2610. This
area spans several regions of identity between PLC-N and
PLC-H, including a stretch of 64 amino acids, encoded
within nucleotides 1896 to 2097, which is 75% identical. The
DNA from this region is 55% homologous.

The total nucleic acid homology between plcN and plcS is
58.7%. The entire amino acid sequence of PLC-N is 40%
identical to PLC-H. There is also a striking parallel between
the frequency of occurrence of amino acids. The homology
is greatest in the first two-thirds to the proteins, which are
47% identical. The regions of strongest homology between
the two proteins contain an equal mix of hydrophobic and
hydrophilic amino acids.

The high degree of homology between plcN and plcS
suggests a gene duplication event with subsequent muta-
genic drift. Mutations could occur independently in dupli-
cated genes, resulting in two very different enzymes that
evolved from a common ancestor. For example, a mutated
form of the aliphatic amidase of P. aeruginosa has a substi-
tution of an isoleucine for a threonine residue, which broad-
ens the substrate specificity of the enzyme (27), allowing
utilization of a substrate not available to the parent enzyme.
This process may result in an increase in metabolic diversity,
allowing growth in novel environments. It should be noted
however, that plcN and plcS are not the result of a relatively
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simple tandem duplication, because we have found by using
transverse pulsed-field gel electrophoresis and genetic link-
age studies that these genes are considerably distal to each
other, on opposite sides (i.e., ca. 180° on a circular chromo-
some) of the P. aeruginosa chromosome (17; V. Shortridge,
R. Fick, M. Pato, and M. Vasil, submitted for publication).
plcN is located at approximately 34 min and plcH is located
at approximately 67 min on the 75-min linkage map (23).

Some structure-function relationships can be inferred
from the homology data. The majority of the homology lies
within the first two-thirds of the proteins. Six strongly
conserved areas occur within this region. These domains
may be critical for PLC activity, either as active sites or by
conferring a particular conformation to the proteins. Perhaps
the hemolytic and substrate specificity domain of PLC-H is
contained in the COOH terminus of the protein. Little
homology exists between other genes and plcN, based on a
GenBank search.

Further comparisons of PLC-N with PLC-H can be made
in the future by using the sequence information. The homol-
ogy data can be used to target specific sequences for
site-directed mutagenesis in both PLC-N and PLC-H. These
experiments may further define structure-function relation-
ships between PLC activity, substrate specificity, and hemo-
lytic activity.
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